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Abstract
Weak antilocalization of a two-dimensional electron gas formed at a
In0.53Ga0.47As/InP heterointerface was studied. The Fermi level was varied
from below, to above, the energy minimum of the second subband. A model
for quantum coherence with two conducting subbands and fast intersubband
scattering was used to extract the characteristic phase and spin decoherence
rates from experimental magnetoresistance data. Taking into account the
spatial inhomogeneity of the energy associated with the subband minimum,
the first and second subband decoherence contributions were separated. It was
shown that phase decoherence in the second subband is much faster than in
the first subband and it decreases with increasing occupation of the second
subband. By contrast, spin dephasing due to scattering in the second subband
and intersubband scattering does not play a noticeable role.

Spin coherence is a key requirement for future semiconductor-based spintronic devices [1]
and quantum computers [2]. Spin–orbit interactions determine the spin coherence time of
electrons in such semiconductor structures. Recent theoretical studies [3] reveal a complex
picture for spin–orbit splitting of the two-dimensional (2D) electron subbands, determined
by intrinsic and artificial asymmetries of these structures. It was shown that these effects
are not additive [4] and provide anisotropy in the characteristic times [5]. While these
characteristics underline the importance of experimental studies of spin–orbit subband splitting
in semiconductor nanostructures, they also make such experiments challenging.

One of the most powerful methods for studying spin–orbit splitting in semiconductor
quantum wells is investigating low temperature quantum coherent transport [6, 7]. For
fast spin–orbit (SO) relaxation τs � τϕ [8], where τs and τϕ are the SO and phase
relaxation times, respectively. Spin splitting of the energy states determines the rate of
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Table 1. Low temperature (1.8 K) 2DEG parameters for two typical samples of LPE grown
selectively doped In0.53Ga0.47As/InP heterostructures.

Initial state First subband
parameters

ns µ

Sample No (1011 cm−2) (104 cm2 V−1 s−1) τ (ps) τϕ (ps) τs (ps) τ ∗
12 (ps) E2 (meV) �2 (meV)

1 2.9 3.82 1.03 20.5 5.23 2.3 ± 0.5 10.05 ± 0.03 0.38 ± 0.02
2 4.2 2.52 0.74 35.7 2.63 4.5 ± 0.7 14.3 ± 0.05 0.27 ± 0.02

spin–orbit scattering and its density dependence. Fast SO relaxation leads to a positive
magnetoresistance at low magnetic fields, which changes to negative magnetoresistance at
higher fields. Therefore, a so-called antilocalization maximum in the magnetoresistance or a
minimum in the magnetoconductivity with increasing magnetic fields was predicted [9].

For a 2D electron gas (2DEG) an antilocalization maximum in the magnetoresistance was
experimentally observed in GaAs-based heterostructures [6, 10] but subsequent experiments
demonstrated that the influence of the SO scattering is much more pronounced in
In0.53Ga0.47As/InP heterostructures [7, 11]. These latter studies on asymmetric quantum wells
in In0.53Ga0.47As/InP heterostructures enabled the main physical mechanisms for SO relaxation
in the 2DEG to be studied [7, 11, 12]. The goal of this paper is to clarify the contribution of
electrons in the second subband to the spin and phase decoherence of electrons in an asymmetric
quantum well.

Analysis of the theory [13] shows that the most direct way to experimentally determine
the electron coherence time in the second subband is to study weak localization in a sample,
preferably having short range scatterers. In this case, intersubband scattering can be sufficiently
fast to yield averaged characteristics of the 2DEG filling two subbands. Normally at low
temperatures, the main mechanism limiting the mobility of such a 2DEG is ionized impurity
scattering [14], which is long range. Hence, for our experiments we choose selectively
doped In0.53Ga0.47As/InP heterostructures grown by liquid phase epitaxy (LPE) on semi-
insulating InP substrates [15]. Both the InP buffer layer and the In0.53Ga0.47As layers were
grown using Sm as the getter impurity in the liquid phase. This provides very lightly doped
layers with p-type conductivity [16]. The 2DEG is localized in the In0.53Ga0.47As layer
in the asymmetrical potential well near the In0.53Ga0.47As/InP heterointerface. We choose
samples with 2DEG densities in the range (3–5) × 1011 cm−2 providing only first subband
occupation in the initial equilibrium state and occupation of the second subband in the saturated
persistent photoconductivity state. Parameters for two typical samples are given in table 1.
Comprehensive investigations of the carrier density dependence of the 2DEG mobility µ(ns)

in the In0.53Ga0.47As/InP structures at liquid helium temperatures [17, 18] demonstrated that
for ns > 2×1011 cm−2 the main scattering mechanism is alloy disorder scattering [19] limiting
the mobility to (1–2) × 105 cm2 V−1 s−1 and interface roughness scattering [20]. LPE cannot
provide an ultrasmooth heterointerface. The roughness parameters were an rms amplitude of
0.7 nm and a period of 5 nm [18]. For our investigations it is important that alloy disorder and
spatial interface fluctuations are both described by a short range scattering potential.

Experiments were performed at 1.8 K. A DC measurement system was used for measuring
the Hall effect and weak anomalous magnetoresistance at low magnetic fields |B| < 100 G. The
2DEG density was varied using the persistent photoconductivity effect induced by light pulses
from a GaAs light-emitting diode placed on the sample holder. Persistent photoconductivity
originates from the spatial separation of photoinduced carriers by the internal electric field.
As a result, electrons are trapped in the potential well and increase the 2DEG density while
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Figure 1. The dependence of the transport relaxation rate on the Hall density of a two-dimensional
electron gas at the In0.53Ga0.47As/InP heterointerface in sample No 1 (a) and No 2 (b). Points are
experimental data corresponding to a series of sample states after illumination pulses at 1.8 K. The
transport relaxation rate increase is attributed to the contribution of intersubband scattering once the
second subband starts to be populated. Dotted curves are calculated for an ideal step-like density
of states. Solid curves are the result of fitting using equations (3) and (4) and taking into account
the density of states originating from spatial inhomogeneities in the second subband energy. Point
‘O’ is a mid-point between the curve extreme points, corresponding to EF = E2.

holes are captured by the residual ionized acceptors in the In0.53Ga0.47As layer. This leads
to a mobility increase as seen in figure 1. Note that the mobility reaches a maximum at
ns = 3.4 × 1011 for sample No 1 and 4.8 × 1011 cm−2 for sample No 2. This corresponds to
the onset of a new intersubband scattering channel when the Fermi level crosses the bottom
of the second subband EF > E2. For an ideal 2DEG system the density of states is equal to
g0 = m/π h̄2 when EF < E2 and abruptly increases to 2g0 at EF = E2. This corresponds to a
sharp increase in the transport relaxation rate

1

τ
= 1

τ1
+

1

τ12
(1)

(1/τ12: intersubband relaxation rate) as shown by the dotted line in figure 1(a). In practice, a
smooth variation around the transition energy is seen (experimental points in figure 1) and can
be described by a Gaussian broadening caused by the spatial inhomogeneity [21]. This results
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in the following density of states near the second subband edge:

g2 = g0

2

(
1 + erf

(
E − E2√

2�2

))
(2)

where erf(x) is an error function, E2 is the mean value of the second subband bottom, and �2

is the mean variation in E2. Since the probability of intersubband transitions is proportional
to the density of states at the Fermi level, equation (1) becomes

1

τ
= 1

τ1
+

1

2τ12

(
1 + erf

(
eF√
2�2

))
(3)

where eF = EF − E2.
The 2DEG density is thus

ns = g0(eF + E2) +
g0

2

∫ ∞

−∞

(
exp

(
x − eF

kBT

)
+ 1

)−1(
1 + erf

(
x√
2�2

))
dx . (4)

The first term in equation (4) is the electron density in the first subband n1, and the second term
corresponds to the electron density in the second subband n2 when the Fermi level crosses the
bottom of the second subband.

The method used to estimate parameters of the density of states and intersubband scattering
rate from the experimental dependence 1

τ
(ns) is presented in figure 1(a). The ‘mid-point’

marked as ‘O’ between the two extreme points of the curve corresponds to eF = 0. According to
theory, when kBT, �2 � E2 the coordinates of the mid-point are nO

∼= g0 E2 and 1
τO

= 1
τ1

+ 1
2τ12

.
Comparison with the experimental coordinates of the ‘mid-point’ in figures 1(a) and (b)
provides an estimate of E2 and 1

τ12
for our samples. These parameters were used as initial

parameters for fitting full experimental 1
τ
(ns) dependences using equations (3) and (4). The

first step was to vary the value of �2 to fit the extreme point positions and then best fit curves
(solid curves in figure 1) were obtained optimizing values of E2 and 1

τ12
around initial values.

The resulting values for the intersubband scattering time τ12 and parameters for the second
subband energy distribution E2, �2 are given in table 1.

The influence of spin–orbit interactions on weak localization has been well studied for
selectively doped In0.53Ga0.47As/InP heterostructures with electrons filling the ground subband
only. The first observation of an antilocalization maximum was reported in 1984 [22].
Comprehensive investigations were recently made on a series of samples in the equilibrium
state [7, 11] and in the nonequilibrium, persistent photoconductivity, states [12]. Analysis
of experiments was based on theory [4] which considers two types of spin–orbit interaction.
The first is the Dresselhaus term [23] corresponding to bulk inversion asymmetry (BIA) of the
crystal lattice, and the second is the Rashba term [24] concerned with the structural inversion
asymmetry (SIA) of the conducting channel in heterostructures. Results obtained over a wide
range of 2DEG density permitted the contributions of different spin splitting mechanisms to
be separated and showed that structural inversion asymmetry plays the most important role in
In0.53Ga0.47As/InP structures, especially at high 2DEG densities. Therefore, we can neglect the
Dresselhaus term and interference between the BIA and SIA terms. As a result spin coherence
can be described by a single parameter:

1

τs
= 2τ

h̄
α2k2

F (5)

(α is a SIA constant, kF is Fermi vector) and the following equation can be used to describe
the normalized magnetoconductivity �σ/G0 ≡ (σ (B) − σ(0))/(e2/2π2h̄) for electrons in
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the first subband [25, 26]:

�σ

G0
= f2

(
B

Hϕ + Hs

)
+

1

2
f2

(
B

Hϕ + 0.5Hs

)
− 1

2
f2

(
B

Hϕ

)
, (6)

Hi = h̄c

4eDτi
. (7)

f2(x) = �( 1
2 + 1

x )+ ln(x), where �(x) is the digamma function; D is the diffusion coefficient.
To establish an equation for the quantum correction to the conductivity in a two-subband

system, we use results from the rigorous theory of weak localization in multilevel quantum
wells [13]. Some limiting cases were theoretically studied in [27]. In the most common case
intersubband scattering is weak, τ � τ12, because the scattering potential is smooth. The
diffusion coefficients D1 and D2 can be defined for the electrons in each subband giving the
following equation for magnetoconductivity:

�σ

G0
=

2∑
n=1

[
f2

(
B

H (n)
I

)
+

1

2
f2

(
B

H (n)
II

)
− 1

2
f2

(
B

H (n)
III

)]
, (8)

where both H (1)

i and H (2)

i are determined by the diffusion coefficients, rates of phase and spin
decoherence in the first and second subbands as well as by the rate of intersubband scattering
(see [13]). The spin-dependent part of the intersubband transition time is neglected because
the spin–orbit interaction is weak and τ12s � τ12, τϕ, τs . Therefore intersubband transitions
play the role of an additional phase breaking mechanism.

If the scattering potential is sharp, then τ ∼ τ12 � τϕ, τs and equation (6) can be used
for the magnetoconductivity. An averaged diffusion coefficient derived from the conductivity
must be used. Phase and spin breaking rates have to be averaged with weights determined by
the density of states in the first (g1) and second (g2) subbands:

1

τi
=

∑2
n=1

gn

τ
(n)
i∑2

n=1 gn

. (9)

If τ � τs and spin–orbit interaction is weak, then τ12 � τ12s . In this case, the rate
of spin-dependent intersubband scattering 1/τ12s can be comparable to the rate of spin–orbit
intrasubband scattering. Therefore, to get the total spin decoherence rate one must add 1/τ12s

to equation (9). One of the tasks of this study was to find clear experimental confirmation for
this intersubband mechanism for spin decoherence.

Typical experimental �σ(B)

G0
dependences with antilocalized minimum are presented in

the inset of figure 2(a) (points). To extract phase and spin coherence parameters we fit
the experimental curves using equation (6). In accord with theory the value of �σ

G0
|min is

determined by the ratio Hϕ

Hs
, only. Therefore, the values and positions of extremes were used

to estimate fitting parameters Hϕ and Hs . These parameters were just slightly varied to fit
the experimental curve at small magnetic field up to B ≈ 0.5Htr (where Htr = h̄c

4eDτ
). The

condition B < Htr determines the applicability of the diffusion approach, which lies at the
basis of weak localization theory. The resulting theoretical curve is presented as a solid line
in the inset of figure 2(a). Fitting parameters with uncertainty (error bars) for two samples
can be found in figure 2 in the form of the density dependences of Hϕ and Hs . Vertical lines
in these figures correspond to the minimum transport relaxation rate (see figure 1). Values of
characteristic coherence times τϕ, τs calculated from Hϕ and Hs at these 2DEG densities are
presented in the table 1 as values characterizing the spin and phase coherence of electrons in the
first subband. One can see that the presence of electrons in the second subband results in a fast
increase of Hϕ with a simultaneous slow decrease of Hs . It is important to note that equation (6)
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Figure 2. The density dependence of the characteristic magnetic fields for phase Hϕ (closed points)
and spin decoherence Hs (open points), obtained by fitting the experimental magnetoresistance
curves (see the inset) with weak localization theory—equation (6) for samples No 1 (a) and
No 2 (b). Vertical dotted lines indicate the 2DEG density corresponding to the minima of the
τ−1(ns ) dependences (see figure 1). Inset: typical experimental dependences of the normalized
magnetoconductivity on magnetic fields (points). The line is a result of fitting experimental data
in the magnetic fields B � 0.5Htr providing applicability of the weak localization theory.

can be used to describe the magnetoconductivity of the system with two filled subbands only
in the case of fast intersubband scattering τ ∼ τ12 � τϕ, τs . As discussed above, we chose
samples dominated by short range scattering and providing effective intersubband scattering.
As can be seen, sample No 1 fully satisfies this condition. For the second sample, intersubband
scattering is faster than phase decoherence but slower than spin decoherence. A quantitative
analysis of both samples is given below.

Each point in figure 2 corresponds to a new sample state after a short light pulse, and to
a new position of the Fermi level relative to the average second subband edge. Intersubband
scattering is sufficiently fast to introduce an averaged diffusion coefficient

D =
(

σ

e2

)/(
dns

dEF

)
. (10)

By differentiating equation (4) the diffusion coefficient was calculated for different 2DEG
densities corresponding to the experimental points in figure 2. Using equation (7), we
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Figure 3. Phase 1/τϕ (closed points) and spin 1/τs (open points) decoherence rates versus position
of the Fermi level, relative to the averaged value of the second subband bottom eF = EF − E2 for
samples No 1 (a) and No 2 (b). The solid curve is calculated using equation (11) suggesting very
slow decoherence in the second subband. Dotted curves correspond to right axes and demonstrate
the energy dependence of the second subband occupation.

determined the phase 1/τϕ and spin decoherence rates 1/τs over the range of 2DEG densities
studied. Experimental dependences of these decoherence rates on the Fermi level position eF

are given in figure 3 (points) for two samples. Dotted curves in figure 3 show the relative
population of the second subband (right axis). When noticeable occupation of the second
subband occurs, the decoherence rate changed but in a different manner for phase and spin
coherence. The phase decoherence rate increases while the spin decoherence rate decreases.
To analyse these dependences we use equation (9) which can be rewritten as follows:

1

τi
=

1
τ

(1)
i

+ 1
τ

(2)
i

( 1
2 + 1

2 erf( eF√
2�2

))

( 3
2 + 1

2 erf( eF√
2�2

))
(11)

where i is ϕ for phase decoherence and s for spin decoherence; the upper index corresponds to
the subband number. Under the experimental conditions used, the electron density variation in
the first subband is very weak—less than 10%. This allows us to assume that the decoherence
rates in the first subband 1/τ (1)

ϕ , 1/τ (1)
s are constant. As a first step, we assume that decoherence

in the second subband is very slow. The solid curves in figure 3 were obtained from
equation (11) with 1/τ (2)

ϕ = 1/τ (2)
s = 0. These calculations can now be compared with

the experimental data.
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Figure 4. The phase decoherence rate of electrons in the second subband versus electron density
in the second subband, for each sample. Closed points—sample No 1, open points—sample No 2.
Dotted lines represent y ∼ 1

x and ∼ 1√
x

proportionalities.

One can see that for both samples, the calculated curves quantitatively describe the
experimental dependence for the spin decoherence rate (open symbols in figure 3) for all
Fermi level values. This means that spin decoherence in the second subband is much slower
than in the first subband and can be neglected. Slow spin relaxation in the second subband can
be attributed to a small spin–orbit splitting at small Fermi wavevector for the weakly occupied
second subband. According to theory [28], the spin decoherence rate strongly increases with
the Fermi wavevector 1/τs ∼ (kF)

p, where p > 2 and

1/τ (2)
s

1/τ
(1)
s

∼
(

k(2)
F

k(1)
F

)p

∼
(

n2

n1

)p/2

< 0.1,

which is in good agreement with experimental results. It is clear that any additional scattering
channel will increase the calculated values and degrade the agreement between experimental
and calculated curves. This means that spin flip intersubband scattering does not play a
noticeable role in the spin decoherence of the electrons occupying the two quantum subbands.
An estimation of 1/τ12s can be made using data from table 1 suggesting that τs/τ = τ12s/τ12.
This estimation gives 1

τ12s
/ 1

τ
(1)
s

∼ 0.2–0.5 and predicts a noticeable influence of intersubband

spin scattering, which contradicts the experimental results.
Small fluctuations of experimental 1/τs are observed in figure 3 (especially for sample

No 1) for very weak occupation of the second subband and can be attributed to the influence
of electrons localized in the tail of the second subband.

A totally different picture is observed for the phase decoherence rate. When electrons
appear in the second subband, the experimental dependence (solid points in figure 3)
demonstrates a rise in the decoherence rate while calculations predict a decrease of 1/τϕ

(solid curves in figure 3). As a result, the experimental values of the phase decoherence rate
noticeably exceed the calculated values. This discrepancy can be attributed to the important
role of phase relaxation processes in the second subband. By comparing the experimental data
and equation (11) the phase decoherence rate in the second subband, 1/τ (2)

ϕ can be determined.
Dependences of 1/τ (2)

ϕ on electron density in the second subband n2 are presented in figure 4
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for the two samples. Comparing figures 3 and 4 it can be seen that the phase decoherence rate
in the second subband is far larger than for the first subband. Another important fact is that the
phase relaxation rate quickly decreases with increasing electron density in the second subband
1/τ (2)

ϕ ∼ (n2)
−p where p = 0.5–1. We cannot compare results with theoretical prediction

for phase breaking due to electron–electron interactions [29, 30] because we cannot decouple
electrons in each subband due to the rapid intersubband scattering.

In conclusion, the combination of phase and spin decoherence in a 2DEG was studied.
In particular, we focused on electron decoherence involving the second quantum subband
for selectively doped InP/In0.53Ga0.47As heterostructures grown by LPE. Short range electron
elastic scattering in these structures determined the high rate of the intersubband scattering.
Persistent photoconductivity was used to vary the electron density and filling of the second
quantum subband. Analysis of µ(ns) was made taking into account the density of states
variation caused by spatial inhomogeneity. Extracted parameters of inhomogeneity were
used to calculate the decoherence rates from characteristic parameters determined by fitting
experimental magnetoresistance curves with antilocalization maxima. Theory for fast
intersubband scattering and only one mechanism for spin–orbit scattering has been used.

As a result, experimental dependences of the spin and phase decoherence rates on the Fermi
level position below and above the second subband edge were determined. By comparing
these dependences with theory we showed that (a) there was a negligible role for intersubband
transitions in the spin decoherence and slow spin decoherence of electrons in the second
quantum subband, attributable to the small value of the in-plane wavevector of electrons in the
second subband, and (b) large values of the phase decoherence rate of electrons in the second
quantum subband decreasing with second subband population increase. We are currently
attempting to develop a theory to explain this result.

References

[1] Wolf S A, Awshalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y and
Treger D M 2002 Science 294 1488

[2] Kane B E 1998 Nature 393 133
[3] Averkiev N S and Golub L E 1999 Phys. Rev. B 60 15582
[4] Iordanskii S V, Lyanda-Geller Yu B and Pikus G E 1994 JETP Lett. 60 206
[5] Averkiev N S, Golub L E and Willander M 2002 J. Phys.: Condens. Matter 14 R271
[6] Knap W, Skierbiszewski C, Zduniak A, Litwin-Staszewska E, Bertho D, Kobbi F, Robert J L, Pikus G E,

Pikus F G, Iordanskii S V, Mosser V, Zekentes K and Lyanda-Geller Yu B 1996 Phys. Rev. B 53 3912
[7] Kreshchuk A M, Novikov S V, Polyanskaya T A and Savel’ev I G 1997 Semiconductors 31 391
[8] Altshuler B L and Aronov A G 1985 Modern Problems in Condensed Matter Sciences vol 10, ed A L Efros and

M Pollak (Amsterdam: North-Holland)
[9] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 44 707

[10] Dresselhaus P D, Papavassiliou C M A, Wheeler R G and Sacks R N 1992 Phys. Rev. Lett. 68 106
[11] Kreshchuk A M, Novikov S V, Polyanskaya T A and Savel’ev I G 1998 Semicond. Sci. Technol. 13 384
[12] Bikanov D D, Novikov S V, Polyanskaya T A and Savel’ev I G 2002 Semiconductors 36 1389
[13] Averkiev N S, Golub L E and Pikus G E 1998 Semiconductors 32 1087
[14] Lee K, Shur M S, Drummond T J and Morkoç H 1983 J. Appl. Phys. 54 6432
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